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The general solution of the particle momentum equation for unsteady Stokes flows is
obtained analytically. The method used to obtain the solution consists of applying a
fractional-differential operator to the first-order integro-differential equation of motion
in order to transform the original equation into a second-order non-homogeneous
equation, and then solving this last equation by the method of variation of parameters.
The fractional differential operator consists of a three-time-scale linear operator that
stretches the order of the Riemann–Liouville fractional derivative associated with the
history term in the equation of motion. In order to illustrate the application of the
general solution to particular background flow fields, the particle velocity is calculated
for three specific flow configurations. These flow configurations correspond to the
gravitationally induced motion of a particle through an otherwise quiescent fluid, the
motion of a particle caused by a background velocity field that accelerates linearly in
time, and the motion of a particle in a fluid that undergoes an impulsive acceleration.
The analytical solutions for these three specific cases are analysed and compared to
other solutions found in the literature.

1. Introduction

The description of the motion of small particles in a viscous flow is of fundamental
importance in many engineering and scientific fields. The vast majority of the studies
in the field of multiphase flows are conducted numerically, where the particle equation
of motion is either solved through iterative schemes, or is simplified to allow for fast
computations. In either situation, the outcome of the numerical studies is compromised,
since computational costs need to be balanced against unrealistic solutions. The most
commonly used strategy is to neglect troublesome terms in the equation of motion and
solve exactly or numerically the remaining simplified equation. This option proves to
be unsatisfactory for many important flows, especially when the unsteadiness of the
flow field near the particle plays an important role in the balance of forces acting on
the particle. In this work, we solve the particle equation of motion exactly, overcoming
the most fundamental problems of computing particle velocities in unsteady viscous
flows.

Among the earliest attempts to describe the motion of a rigid particle in a viscous
flow is the equation derived by Oseen (1927), based upon the works of Boussinesq
(1885) and Basset (1888). Because of these fundamental contributions, the equation of
motion in uniform flows is sometimes called the BBO equation (Basset–Boussinesq–
Ossen). Vojir & Michaelides (1994) pointed out that the basic form of the equation was
first derived by Boussinesq in 1885. The very common terminology of Basset equation
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or Basset force would then be inappropriate. In this work, we refer to the equation as
the particle momentum equation and to the Boussinesq–Basset term in the equation as
the history term.

Several forms of the equation of motion for a small particle moving in unsteady
flows have been studied in this century (Tchen 1947; Corrsin & Lumley 1956; Maxey
& Riley 1983), but few attempts have been made to solve the equation of motion for
the velocity of the particle. Also, and most surprisingly, no previous attempts to
describe generally the velocity of the particle as a function of the background flow
characteristics have been conducted. The basic form of the equation of motion in
uniform flows has been known for more than a century, but the BBO equation with
unsteady forcing derived by Tchen (1947) was never analytically solved in a general
form. The objective of this work is to develop a procedure to solve the equation exactly
(to the approximations made in the derivation of the equation) for a generic uniform
flow field characterized by a background velocity U(t)1 0. Following this objective,
the equation of motion for the limit of infinitesimal particle Reynolds number is solved
analytically. The focus of the present work is the mathematical method used to find the
analytical solution of the equation of motion, and not the correction of this equation
for the case of a finite particle Reynolds number. However, the analytical solution of
this classical problem in fluid dynamics should be valuable as a limiting case for higher-
order expansions in the particle Reynolds number.

In §2, a fractional differential operator is applied to a dimensionless form of the
particle equation of motion. This procedure yields a second-order ordinary differential
equation on the relative particle-to-fluid velocity. During the derivation of the explicit
equation, attention is given to the identification of the terms in this equation with the
original forces that generate them. The resulting non-homogenous second-order
equation is then solved exactly in §3 using variation of parameters. In §4 we treat three
specific cases using the general solutions derived in §3. The gravitationally induced
motion of a sphere in a quiescent fluid is studied in §4.1. This is the only case known
to the authors for which the particle momentum equation has been solved analytically
in previous works (see Boggio 1927; Sy, Taunton & Lightfoot 1970; Clift, Grace &
Weber 1978). The procedure used by previous authors consists of working in the
Laplace space and inverting back to the time space only the simplified equation
corresponding to the background flow velocity U(t)¯ 0. An alternative treatment was
suggested by Konopliv (1971), who Laplace-transformed a simplified version of the
momentum equation into an explicit second-order differential equation. Konopliv’s
procedure was extended by Michaelides (1992) to a general flow field U(t).

In §4.2, we analyse the motion of a particle in a viscous fluid that accelerates linearly
in time. This problem is shown to be equivalent to the gravitationally induced motion
in a quiescent flow if a non-inertial reference frame moving with the flow velocity is
chosen by the observer. The equivalence of the two motions should be obvious from
the solution for the particle velocity in an inertial reference frame, thus providing a
good test for the general solution of motion given in §3.

Hinch (1975) studied the response of a particle that undergoes an impulsive start in
connection with the Langevin equation. The impulsive motion of a particle in a viscous
fluid has been treated recently by Felderhof (1991) through an asymptotic analysis. A
similar problem is treated in §4.3, where the problem under consideration is that of a
spherical particle that is initially stationary in a fluid that undergoes an impulsive start
to a constant velocity. The time derivative of the background flow velocity in this case
is a delta function acting at t¯ 0+.
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2. Equation of motion for small particles in unsteady flows

The viscous flow motion of small particles is described by the equation derived by
Maxey & Riley (1983). The resulting equation for the motion of a small rigid particle
subjected to non-uniform flows presents several additional terms in relation to the BBO
equation and, due to its completeness, it is the starting point of our derivation. Maxey
& Riley presented the particle equation of motion as (Maxey & Riley 1983; Maxey
1987)
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where V and U are the particle and fluid velocities, respectively, t is time, a is the radius
of the particle, m

p
is the mass of the particle, m

f
is the displaced fluid mass, g is the

gravitational acceleration vector, and µ are ν the dynamic and kinematic viscosities,
respectively. The fluid velocity U in equation (2.1) is the fluid velocity at the current
position of the particle. The terms in brackets containing the integral from zero to t on
the right-hand side of equation (2.1) are the history terms responsible for the
modification of the drag due to the unsteadiness of the near flow field as the particle
moves through the fluid. The last term in each bracket accounts for non-zero initial
relative velocity (Maxey 1987). In order to simplify the following derivation, the
particle and the fluid are assumed to have initially the same velocity (zero initial
Reynolds number). However, the analysis can be easily extended to non-zero initial
relative velocity.

The nonlinearity of equation (2.1) is related to the fact that the substantial derivative
D}Dt and the terms involving the fluid velocity must be evaluated at the position of
the particle. It is important to emphasize the distinction between the substantial
derivative following a fluid particle (D}Dt) and the substantial derivative following the
rigid particle (d}dt), not only because the values of the derivatives are not equal, but
also because equation (2.1) is not limited to small flow Reynolds number Re

f
¯U

o
L}ν,

where U
o

is the characteristic flow velocity, and L is characteristic length of the
background flow. This feature of the equation allows calculation of, for example, the
motion of a small particle subjected to a turbulent background flow if the Kolmogorov
length scale is much larger than the radius of the particle. Nonetheless, equation (2.1)
is only valid for small particle Reynolds number (Re

p
¯ rU®Vr a}νi 1), small shear

Reynolds number (Re
s
¯U

o
a#}νLi 1), and applicable only for a small particle so that

a}Li 1. If the background flow field under consideration is uniform, both substantial
derivatives are identically equal, and the restriction of small shear Reynolds number is
relaxed. For the cases where the background flow field has negligible convective
acceleration (Stokes flow) approximating the substantial derivative D}Dt as d}dt is
exact to the order of approximation made in the derivation of (2.1). In this work, we
concentrate on the exact analytical solution of the particle momentum equation for
uniform background flows, but the form of the general solution derived in this work
is valid whenever D}Dt can be approximated by d}dt.
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The terms involving the Laplacian of the flow velocity in the third line of (2.1)
represent the Faxe!n corrections for the non-uniformity of the flow field. These terms
are only relevant for background flow fields that present strong velocity gradients
(significant velocity gradients on the scale of the particle radius). For uniform flows, the
Faxe!n corrections are zero. Equation (2.1) is the original form of the equation derived
by Maxey & Riley (1983) and Maxey (1987). Auton, Hunt & Prud’homme (1988)
studied the problem of inviscid flow over a sphere and showed that the second term on
the right-hand side of (2.1), the so-called added mass term, should be written as
m

j
(dV}dt)}2®m

f
(DU}dt)}2. Since the present work is concerned with unsteady

Stokes flows, the suggested modification is not relevant.
For zero initial particle Reynolds number, an equation of motion is obtained from

the non-dimensionalization of equation (2.1) :
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In equation (2.2), α is the fluid-to-particle density ratio, τ
p

is a particle characteristic
time given by 2ρ

p
a#}9µ, tW is the dimensionless time, � and u are the dimensionless

particle and fluid velocities, respectively. Time, velocity, and length are non-
dimensionalized by τ

p
, U

o
, and L, respectively.

Defining w as the relative velocity (�®u), equation (2.2) can be rewritten as
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In order to later recognize the contribution of the different terms in equation (2.3), each
term is multiplied by a binary coefficient (P*¯ pressure, H*¯ history, M*¯ �irtual
mass, D*¯ drag, and G*¯ gra�ity), with possible values of 0 or 1, depending on the
consideration or not of the corresponding forces. Equation (2.3) then becomes
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The following coefficients can also be defined:
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In terms of the new coefficients, the equation of motion for a particle is written as

dw

dtW
DkwHk ( & t

W

!

dw

dσ

dσ

(τW ®σ)"/#*¯Gk®Pk
du

dtW
. (2.11)



General solution of the particle momentum equation 57

We identify the history term (in curly brackets) as π"/# times the Riemann–Liouville
half-derivative of the relative velocity w. The Riemann–Liouville fractional derivative
of order n of f(tW ) is defined as (Zayed 1996)
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where Γ(z) is the gamma (generalized factorial) function of z, and m®1% n!m,
m¯ 1, 2, 3,… .

In definition (2.12), we take n¯®1}2 and f(tW )¯dw}dtW , and using the property
d−"/#}dtW−"/#(dw}dtW )¯d"/#w}dtW "/#, we reduce equation (2.11) to
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Equation (2.13) makes explicit the characteristic feature of the equation of motion that
makes it hard to solve. The equation is characterized by three terms in w which are
associated with three different time scales, including a non-integer scale. In order to
circumvent this difficulty, we apply the following linear operator to (2.13) :
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The second term on the right-hand-side of (2.15) results from the definition (2.12) – the
contribution to the half-derivative of f(tW ) of the time integral from ®¢ to 0 is equal
to f(0)}(πtW )"/#.

When the binary coefficients (with superscript *) are set to unity, (2.15) is equivalent
to the one derived by Michaelides (1992), who Laplace-transformed the equation of
motion (2.3) to derive an equivalent second-order differential equation in w. The idea
of Laplace-transforming the equation of motion to transform the original integro-
differential (or non-integer differential) equation into an ordinary differential equation
was first suggested by Konopliv (1971). The advantage of equation (2.15) over
Michaelides’ equation is that it allows the association of individual terms with the
forces that generated them. This is important if one wishes to understand the
contribution of these terms in the following derivation. It should be noticed that
Michaelides’ equation already presents an improvement over equation (2.2), since his
equation is explicit in w, although of higher order. Previously, Boggio (1927), and Sy
et al. (1970), obtained analytical solutions for the case of u(tW )¯ 0. Konopliv (1971)
Laplace transformed the equation of motion for the case of u(tW )¯ 0 to obtain a much
simpler form of (2.15). Michaelides (1992) extended Konopliv’s method for all u(tW ), but
resorted to numerical methods to solve the resulting second-order explicit differential
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equation (Konopliv suggested that the equation derived in his short note be solved
numerically, but did not present any result). We will show that it is possible to solve
analytically (2.15) for a general flow velocity u(tW ).

3. Analytical solution of the equation of motion

In order to simplify the notation in the following derivation, we define the following
parameters that are functions of α only:
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Equation (2.15) is then rewritten in terms of the parameters defined by (3.1) to (3.5),
with dots denoting integer derivatives with respect to tW or to the dummy variable of
integration:
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Equation (3.6) is a second-order ordinary non-homogeneous linear differential
equation with constant coefficients. Because the coefficients b and c in the homogeneous
part of equation (3.6) are functions of the coefficients D, H and M (this last one
through k), the solution for the particle velocity has a nonlinear dependence on these
coefficients, making it more difficult to directly associate terms in the solution for the
particle velocity with the specific forces that generated them. This result is expected
since these forces are dependent on the velocity of the particle and its derivatives in
(2.2). The contribution of virtual mass is embedded in the k factor, which varies from
zero (infinitely light particle) to one (infinitely heavy particle). The virtual mass effect
can be easily assessed by considering solutions with the actual value of k and solutions
with k equal to 1 (no virtual mass effect). The influence of the history term can be
properly quantified if the general solution for the complete equation of motion is
found. This is because the solution of (2.11) neglecting the history term is very easily
found through the method of variation of parameters or through the use of an
integrating factor. In other words, a complete understanding of the forces in the
motion of a small particle through a viscous fluid can be achieved if the solution to the
complete equation of motion is found.

Figure 1 shows the coefficients b, c, ∆, k and H for values of the fluid-to-particle
density ratio α ranging from 10−$ to 10$. These coefficients play a fundamental role in
the mathematical behaviour of the general solution of (3.6), and also help clarify the
importance of particular terms in the equation. The coefficients b and c are the
coefficients in the characteristic equation associated with (3.6). The ‘damping’
coefficient b assumes negative values for values of α larger than 4}9. This indicates that
the rate of change of the relative acceleration is enhanced by the relative acceleration
for values of α in the range [4}9:¢), and not damped by the relative acceleration as
it happens for smaller values of α. The ‘spring-constant’ coefficient c is equal to k#, and
reflects the importance of the virtual mass for the motion of the particle. As discussed
before, the virtual mass coefficient k assumes values in the range [0:1] as the particle
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goes from infinitely heavy to infinitely light. The form of the general solution for
equation (3.6) depends on the value of the coefficient ∆, defined by (3.3). The coefficient
∆ is negative for a heavy particle and for a particle with density similar to the fluid, but
becomes positive for a value of α equal to or greater than 8}5. Clearly, when the density
of the fluid is equal to the density of the particle equation (3.6) yields a trivial solution
(w¯ 0). The history coefficient H is negligible for a heavy particle but assumes a value
that is orders of magnitude larger than all other coefficients in (3.6) for a particle much
lighter than the fluid. This observation is of particular interest for the situations where
the history drag does not asymptote to zero at initial times, as it is the case for the
impulsive start discussed in §4.3. In this situation, the history drag is orders of
magnitude larger than the Stokes drag for light particles and short times.

Further analysis of equation (3.6) shows that contributions from the time derivatives
of the fluid velocity and from the gravity field are only present in the non-homogeneous
part of that equation. The fact that both (2.11) and the operator Ψ are linear makes
it possible to maintain the contributions from the background flow in the non-
homogeneous part of the equation, allowing a general solution for a generic
background flow to be found. The following subsections treat the cases when ∆" 0
(α" 8}5), ∆¯ 0 (α¯ 8}5), and ∆! 0 (α! 8}5), respectively.

3.1. The case ∆" 0 (α" 8}5)

For the case when the fluid-to-particle density ratio is larger than the critical value of
8}5, the characteristic equation associated with the homogeneous part of (3.6) has two
distinct and real roots, and the general solution of the homogeneous equation has the
form
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with the Wronskian of the two linearly independent solutions given by
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The general solution for the relative velocity w(tW ) when ∆" 0 is found to be
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The two initial conditions associated with equation (3.6) are used to find the constant
vectors A and B :

w(0)¯ 0, (3.10)
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The first initial condition is due to the original assumption of initial particle Reynolds
number equal to zero. The second condition is derived directly from (2.11). The
constant vectors A and B are then obtained as
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Thus, the relative velocity of a particle lighter than critical is given by
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Equation (3.14) is the general solution for the particle velocity in unsteady Stokes or
uniform flows for the case when the fluid is more than 8}5 times denser than the
particle, and for initial Reynolds number equal to zero. The restriction on the initial
Reynolds number is not practically binding because the same solution procedure
advanced here can be used to find the solution for different initial Reynolds numbers.
Equation (3.14) is of particular interest in marine sciences because it allows the motion
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of small bubbles that behave as light solid spheres to be described. The presence of
surfactants in small sea bubbles may reduce the strength of the internal circulation and
allow one to impose the no-slip condition as if the bubbles were rigid spheres (Clift
et al. 1978). The unsteady motion of these small bubbles is greatly influenced by the
history term since the inertia of the bubbles is much smaller than the inertia of the
surrounding fluid.

Equation (3.14) relates explicitly the particle velocity to the background flow. We
proceed in the next two subsections with the derivation for the other possible values for
∆. Section 4 is concerned with applications of the general solutions to three different
unperturbed flow fields u(tW ).

3.2. The case ∆¯ 0 (α¯ 8}5)

When the fluid-to-particle density ratio is equal to 8}5 (critical density ratio), the
solution to the characteristic equation associated with (3.6) has two identical roots,
leading to the following form of the solution for the homogeneous equation:
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W
",#

(tW )¯ e#kt
W
. (3.16)

The general solution for this critical case is found through the method of variation of
parameters after application of the initial conditions (3.10) and (3.11) to yield
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Equation (3.17) is the general solution for the Stokes motion of a particle starting at
zero relative velocity, and with critical fluid-to-particle density ratio (α¯ 8}5). Because
(3.17) is only valid for the critical density ratio, its practical interest is very limited. It
is shown here only for mathematical completeness, and will not be used to find the
solution for specific background flows in §4. The transition from less than critical to
larger than critical density ratio is smooth and the solution for the critical density ratio
can be approached from either side of the spectrum of α. The critical value of α¯ 8}5
is thus only of mathematical relevance and does not imply a change of physical character
of the problem.
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3.3. The case ∆! 0 (α! 8}5)

When the discriminant of the characteristic equation associated with (3.6) is smaller
than zero, the roots of the characteristic equation are complex. The form of the real-
valued solution to the homogeneous equation is

w
h
(tW )¯A e−bt

W
/# cos (r∆r"/# tW}2)B e−bt

W
/# sin (r∆r"/# tW}2), (3.18)

with an associate Wronskian given by

W
",#
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#
r∆r"/# e−bt

W
. (3.19)

Following the same procedure used in the previous subsections, the general solution for
a particle heavier than critical is given by
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4. Application of (3.14) and (3.20) to specific flow fields

In this section, we apply the general solutions (3.14) and (3.20) to specific
background flows. These background flow fields were selected to illustrate the
applicability of the solutions, and to show some of the properties of the solutions. The
three background velocity fields studied here are u(tW )¯ 0, u(tW )¯ptW , and
ud (tW )¯qδ(tW®0+), where p and q are constant vectors. The first velocity field corresponds
to a quiescent fluid, in which the particle is allowed to move under the influence of a
constant gravitational field. The motion of a particle under these conditions has been
determined before (Clift et al. 1978), and the solution derived by the method presented
in this work is compared to the previous studies. The second velocity field corresponds
to a fluid accelerating linearly in time (constant acceleration p). This flow field is of
particular interest here because it allows the formal solution given by (3.14) and (3.20)
to be compared with the solution for the quiescent case after a Galileian
transformation. The velocity of a particle in this case is equivalent to that related to the
gravitationally induced motion if an appropriate reference frame is chosen. The third
velocity field corresponds to an impulsive start, where the fluid is at rest at tW ¯ 0, but
jumps to a constant velocity q at tW ¯ 0+. The solution for this case is found after
consideration of the terms related to the first and second derivatives of the fluid velocity
in (3.14) and (3.20), and can be compared to asymptotic solutions found in the
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F 2. (a) Component of the normalized velocity difference in a generic direction i for different
values of α and for the gravitationally induced motion (including history effects). (b) As (a) but
neglecting history effects.

literature (Felderhof 1991). Felderhof made use of short- and long-term expansions to
study the behaviour of a small particle under the action of an impulsive force. The
solutions for these three simple cases require the use of all terms in (3.14) and (3.20),
and may be superposed to describe more complex flow fields.
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4.1. Gra�itationally induced flow in a quiescent fluid

In this subsection, we study the solutions (3.14) and (3.20) for the case u(tW )¯ 0. For
this case, and for a particle lighter than critical (α" 8}5), equation (3.14) is greatly
simplified to yield

w(tW )¯ �(tW )¯ 9109α

2∆1
"/#

k# 0eRt
W
erfc (RtW )"/#

R"/#
®

eQt
W
erfc (QtW )"/#

Q"/#
1:G, (4.1)

which is the solution previously found by Boggio (1927) and Sy et al. (1970) through
the Laplace transformation of the equation of motion for a particle in a quiescent fluid.
Because of the linearity of the equation of motion in uniform flows and at zero particle
Reynolds number (equation (2.3)), this solution can always be added to solutions
found for zero-gravity flows in order to find the velocity of a particle under the
influence of a constant gravitational field.

For a particle with density larger than critical (α! 8}5), equation (3.20) is reduced
to
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Equation (4.2) is equivalent to the solution obtained by Boggio (1927) and presented
in Clift et al. (1978) in terms of the imaginary error function. The reader should note
that Table 11.1 in Clift et al. (1978) contains several typographical errors.

At this point, it is interesting to investigate the effect of the history term on the
velocity of the particle. When the history term is neglected, the solution to (2.11) is
readily found, yielding the following relative velocity (the subscript nh stands for ‘no
history’) :

w
nh

(tW )¯ (1®e−kt
W
)G®Pk e−kt

W & t
W

!

ekσud (σ) dσ. (4.3)

For the gravitationally induced motion in a quiescent fluid, and neglecting the history
term, the second term on the right-hand side of (4.3) is identically zero, and the particle
velocity is given by a simple exponential decay. Figure 2(a) shows (4.1) and (4.2) for
different values of α. Figure 2(b) shows (4.3), where the history drag is neglected, for
the same values of α. In figure 2(a), the component of the particle velocity (or the
relative velocity) in a generic i-direction is normalized by the ith component of the
terminal velocity G of the particle, which depends on α (equation (2.9)). Figures 2(a)
and 2(b) show that the complete solutions (4.1) and (4.2) deviate significantly from the
simplified solution (4.3) when the value of α deviates from zero. For very light particles,
(4.1) and (4.3) show that it takes several thousand characteristic times to approach the
terminal velocity, but figure 3 shows that the way the terminal velocity is approached
depends on whether or not the history term is considered. For heavy particles (with
larger characteristic times), the influence of the history term is not very strong.

As a numerical example, a 100 µm diameter bubble of air takes approximately
2¬10& τ

p
to reach 90% of its terminal velocity when released from rest in glycerin.
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Even though τ
p

of such air bubble is of the order of 10−* s, the time to reach 90% of
its terminal velocity is calculated by (4.1) to be approximately 0±4 ms. Note that the
added mass force strongly affects the response time of a bubble and for this reason the
response time of bubbles is more closely represented by τ

p
}k. Solution (4.3), which

neglects the history drag contribution, gives a greatly underpredicted value of 2±2 µs.
On the other hand, a particle 20 times denser than glycerin reaches 90% of its terminal
velocity in 9 times its characteristic time. The characteristic time τ

p
of such 100 µm

particle is of the order of 500 ms. Thus, this heavy particle also reaches 90% of its
terminal velocity in 0±4 ms. Solution (4.3) gives, for this case, 0±1 ms. In both situations
the history drag contribution cannot be justifiably neglected, but the error is much
larger in the case of the light particle.

It is important to note that the solution given by the momentum equation studied
in this work predicts an approach to steady state as t−"/#. The kernel of the history drag
term and the respective approach to steady state in this equation is valid only for
infinitesimal Reynolds number, since spherically symmetric diffusion of vorticity from
the surface of the sphere is assumed in the derivation of equation (2.1). Higher-order
corrections predict a faster approach to steady state and correspondingly different
kernels for the history drag. As pointed out by Lovalenti & Brady (1993), the Oseen
corrections become important for the long-term velocity behaviour of the particle for
flows characterized by finite Re

p
. However, in the first-order approximation, the

contribution of the inertial terms is only felt after vorticity is diffused beyond the Oseen
distance, which occurs for tC ν}rV®Ur#. Due to the very low values of Re

p
in the

numerical examples given in the previous paragraph (Re
p
! 10−%), both bubble and

heavy particle reach 90% of their respective terminal velocities much before vorticity
is diffused out from the particle surface to the Oseen distance. In this situation, the
values calculated by the spherically symmetric kernel are correct.
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Figure 4 shows the comparison between the steady-state Stokes drag calculated by
(4.3) and the actual drag that is the sum of the steady-state drag and the history drag
as calculated by (4.1) and (4.2). It is clear from figure 4 that neglecting the history drag
is not a reasonable assumption for light particles. Even for a particle that is only half
as dense as the fluid, the actual drag is largely overpredicted by the steady-state Stokes
drag for many hundreds of times the relaxation time of the particle. For a much heavier
particle the history term contribution is of lesser importance. The steady-state Stokes
drag in this case slightly overpredicts the actual drag for a time smaller than roughly
the relaxation time of the particle and then underpredicts the actual drag for times
larger than the relaxation time of the particle. It is important to note that, since the
relative velocity potential in all curves is equal to the terminal velocity of the particle
G, the curves for the steady-state Stokes and the actual drag forces for a given value
of α have to cross each other at a given point in time. The dimensionless time for which
the steady-state drag shifts from overpredicting to underpredicting the magnitude of
the actual drag is close to unity for very heavy particles and many orders of magnitude
larger for light particles.

4.2. Particle motion in a fluid undergoing constant acceleration

The background velocity field in this case represents a good test of the general solutions
(3.14) and (3.20) because it can be derived from (4.1) and (4.2) after physical reasoning.
For the flow field u(tW )¯ptW , we have ud (tW )¯p and uX (tW )¯ 0.

For a particle lighter than critical (α" 8}5), evaluation of the two integrals related
to ud (tW ) in (3.14) after rearrangement of the terms yields
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Equation (4.4) indicates that, in a zero-gravity environment, the particle moves faster
than the fluid with an asymptotic value of (α®1) p for large times. This value is
equivalent to the dimensionless terminal velocity G in the quiescent case when the
reference frame is moving with the fluid. This result could be deduced without
knowledge of (3.14), simply by considering a non-inertial reference frame and the
solution for the quiescent case.

For a particle heavier than critical (α! 8}5), equation (3.20) is reduced to
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where the same observations made in reference to (4.4) apply, with the difference that
now the particle lags behind the fluid with an asymptotic value of (α®1)p for values
of α smaller than 1, and accelerates faster than the fluid with the same asymptotic value
for values of α between 1 and 8}5. As expected, (4.4) and (4.5) are equivalent to (4.1)
and (4.2). Figures 2 and 3 can be used for a combination of both situations by replacing
the terminal velocity G by the vector G(α®1)p.

4.3. Impulsi�e start at tW ¯ 0+

In this case, the fluid undergoes an impulsive start at tW ¯ 0+, in the absence of a gravity
field. This problem has been studied in connection with the Langevin equation and the
Brownian motion of dilute suspensions (Hinch 1975), and was also approached more
recently through the use of an asymptotic analysis by Felderhof (1991). In the case
under study here, we have

u(0)¯ud (0)¯uX (0)¯ 0, and ud (0+)¯qδ(tW®0+),uX (0+)¯qδd(tW®0+).

For a particle lighter than critical (α! 8}5), all terms multiplying G and ud (0) are zero
in (3.14), and the terms in square brackets of (3.14) yield the following relative velocity
for tW & 0+ :
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For a particle heavier than critical (α" 8}5), equation (3.20) gives
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F 5. (a) Component of the normalized velocity difference in a generic direction i for different
values of α and for the impulsive start motion (including history effects). (b) As (a) but neglecting
history effects.

Figure 5(a) shows the behaviour of the normalized component of the relative velocity
(w¯ �®q) in a generic i-direction as given by (4.6) and (4.7) for different values of α.
Figure 5(b) shows the same plot for the case where the history term is neglected. In this
case, (4.3) yields

w
nh

(tW )¯q(α®1)k exp (®ktW ). (4.8)

In all three solutions, the relative velocity at t¯ 0+ is q(α®1)k. The initial jump in
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the relative velocity indicates that a heavy particle has zero velocity at t¯ 0+, but an
infinitely light particle assumes a velocity three times the velocity of the fluid at t¯ 0+.
The impulsive start motion is also interesting because the response time is much
shorter. The particles asymptote to the fluid velocity q much faster than the time
required to reach the terminal velocity in the gravitationally induced motion. In fact,
for values of α of order one or smaller, the particles approach the fluid velocity q in a
time of the order of ten characteristic times.

In figure 5 we opted for not normalizing the relative velocity by the initial velocity
jump as has been done in the literature (Felderhof 1991), although the results presented
here validate the short- and long-term expansions presented by Felderhof (1991). The
reason for not doing so is that this normalization leads to an artificial crossing of the
velocity curves for different values of α when the history drag is considered. The
crossing of the curves is due to the fact that a higher initial velocity does not
characterize a more massive particle. This is because the initial jump in velocity is a
function of α, and the mass of inertia depends on the density of the particle only. The
crossing trajectory is thus another qualitative difference between the consideration or
not of the history effects, but due only to a particular normalization choice. It is,
however, important to emphasize that the time to reach any fraction of the velocity
step q in the background flow is the same for a given particle, regardless of the
magnitude of the step. This is analogous to saying that the time to reach any fraction
of the terminal velocity G in the gravitationally induced motion is the same for a given
particle, regardless of the magnitude of the gravity field.

As in the case of the gravitationally induced motion, the light particles are greatly
affected by the inclusion of the history term. However, in contrast to what is observed
in the gravitationally induced motion, figures 6(a) and 6(b) show that, for short times,
the magnitude of the actual drag force (the sum of the fourth and fifth terms in
equation (2.3)) is greatly underpredicted by the steady-state Stokes drag obtained by
neglecting the history term (w

nh
). For the case of very light particles, the combined

effect of a large history coefficient H and a non-zero relative velocity at t¯ 0+ makes
the value of the actual drag many orders of magnitude larger than the drag that is
calculated by neglecting the history term contribution.

The fact that the actual drag is initially underpredicted in the impulsive start motion
as opposed to being initially over predicted in the gravitationally induced motion is due
to the different roles that the drag force plays in these flows. In the gravitationally
induced motion, both steady-state Stokes and history drags are preventing the particle
to reach terminal velocity. Neglecting the additional contribution of the history drag
is equivalent to allowing the particle to approach its terminal velocity faster for initial
times. In the case of the impulsive start, both contributions of the actual drag are the
cause of the motion of the particle. Neglecting the history contribution is equivalent to
make the particle initially go more slowly to the zero relative velocity. In both cases,
the situation is reversed for long times since the relative velocity potential is the same,
as discussed in §4.1.

The time required for an air bubble in water to reach 10% of its initial relative
velocity q(α®1)k is calculated by equation (4.6) to be approximately 645 characteristic
times. Equation (4.8), which neglects the history term contribution, gives approxi-
mately 1,115 characteristic times, showing that the history term is responsible for
shortening the response time of the bubble almost by half of the value given by the
simplified solution (4.8). The difference in response times between the complete
solutions (4.6) and (4.8) is not as large as it is in the gravitationally induced motion,
but it is still very significant. The ratio of the simplified to the exact response times



70 C. F. M. Coimbra and R. H. Rangel

2.0

1

0

–1

–2

2

0.05

0.001

0.01 0.1 1 10

(a)

Dimensionless time, t̂

N
or

m
al

iz
ed

 s
te

ad
y 

an
d 

ac
tu

al
 d

ra
g 

fo
rc

es

1000

100

10

1

0.1

20

0.1 1 10 100

(b)

Dimensionless time, t̂

N
or

m
al

iz
ed

 s
te

ad
y 

an
d 

ac
tu

al
 d

ra
g 

fo
rc

es

1000

1000

F 6. (a) Normalized actual drag w
i
}q

i
(9α}2πq#

i
)"/# ! t

W

!
wd

i
dσ}(tW®σ)"/# (thick lines) and steady-

state Stokes drag w
i,nh

}q
i
when the history term is neglected (thin lines) for the impulsive start motion

and for different values of α. (b) As (a) but for higher values of α.

decreases for smaller fluid-to-particle density ratio. A particle 20 times denser than the
fluid reaches 10% of its initial relative velocity in 1±6 characteristic times when the
history term is considered (solution (4.7)). Solution (4.8) gives 2.3 characteristic times
for the same situation. The ratio of response times is, however, related to the fraction
of the initial relative velocity that is chosen to define the response time. In the case of
the impulsive motion, 10% of the initial relative velocity of an air bubble in water is
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reached in a value of tW that is much larger than the time for which the Stokes drag
becomes larger than the actual drag (figure 6b). The value of tW for which the drag curves
cross in this case is 87±5, and 10% of the initial relative velocity is reached for a value
of tW that is an order of magnitude larger. In the gravitationally induced motion, 90%
of the terminal velocity of an air bubble is reached much earlier than the time required
for the crossing of the drag curves.

Figure 6(a) also shows that the history term contribution is negligible for a heavy
particle. The fact that the history term in the equation of motion has negligible
influence on the motion of heavy particles subjected to steady-state background flow
fields is well established. Figure 6(a) shows that this is also the case for unsteady
background flows when the relative acceleration asymptotes to zero for long times.
This observation has important implications for the study of turbulent particle
dispersion. In fact, the dimensionless time tW in figure 6(a) is equivalent to the reciprocal
of the Stokes number in an eddy–particle interaction in turbulent flows. The Stokes
number is defined as the ratio of particle to fluid relaxation times. Characteristic Stokes
numbers for heavy particles affected by turbulent flows are in the range of 0±1 to 10.
Heavy particles interacting with turbulent flows with characteristic Stokes numbers
smaller than 0±1 follow the instantaneous fluid velocity of the flow with negligible
lagging (Wang & Stock 1992). For higher Stokes numbers, the heavy particles do not
respond to turbulent fluctuations of the flow field, and the particles behave
approximately as if the flow has no instantaneous fluctuations but only time-averaged
velocity. These particles are mostly affected by unsteady large-eddy phenomena. Figure
6(a) shows that for an eddy–particle interaction, the history term does not play an
important role for Stokes numbers varying from 0±1 to 100. Since the unsteady effects
are more important for lower Stokes numbers, and figure 6(a) shows that for a purely
unsteady flow (impulsive start) the history term is negligible for any value of Stokes
number lower than 0±1, it is concluded that the history term contribution is
unimportant for the modelling of turbulent particle dispersion of heavy particles. This
conclusion supports the study by Mel, Adrian & Hanratty (1991). They studied the
effect of the history drag on the turbulent diffusivity of a small heavy particle in a
homogeneous, isotropic field. They concluded that the history term has negligible
influence on the long-term particle dispersion mechanism or on the detailed structure
of the time history of the fluid velocity seen by such particle.

5. Concluding remarks

The general solution of the particle equation of motion in unsteady Stokes flows has
been obtained. The procedure to derive the solution consists of applying a linear
operator to the equation of motion that serves the purpose of stretching the non-
integer time derivative present in the history term into an integer derivative in a higher-
order explicit equation. This higher-order equation is then solved exactly by the
method of variation of parameters. The general solution is characterized by three
different mathematical behaviours, corresponding to values of the fluid-to-particle
density ratio α smaller than, equal to, and larger than the critical value of 8}5. The
solution depends only on the particle and fluid parameters and on the derivatives of the
background fluid velocity. The general solution found through the method outlined
above was then applied to three different flow configurations, in order to illustrate its
use and to validate the solution against previous results. The application of the solution
to specific flow field configurations shows that neglecting the history term contribution
may lead to inaccuracies when the particle is not much denser than the fluid.
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